Probability and Random Processes EES 315

Asst. Prof. Dr. Prapun Suksompong

prapun@siit.tu.ac.th
II. Events-Based Probability Theory

Office Hours:

Check Google Calendar on the course website.
Dr.Prapun's Office:
6th floor of Sirindhralai building, BKD

Probability and Random Processes EES 315

Asst. Prof. Dr. Prapun Suksompong

prapun@siit.tu.ac.th
5 Foundation of Probability Theory

Office Hours:

Check Google Calendar on the course website.
Dr.Prapun's Office:
6th floor of Sirindhralai building, BKD

Kolmogorov

- Andrey Nikolaevich Kolmogorov
- Soviet Russian mathematician
- Advanced various scientific fields
- probability theory
- topology
- classical mechanics

- computational complexity.
A.N.KO43OCOwON
- 1922: Constructed a Fourier series that diverges almost everywhere, gaining international recognition.
- 1933: Published the book, Foundations of the Theory of Probability, laying the modern axiomatic foundations of probability theory and establishing his reputation as the world's leading living expert in this field. This book is available at

I learned probability theory from

Gennady Samorodnitsky

Not too far from Kolmogorov

You can be
the $4^{\text {th }}$-generation

probability theorists

Probability and Random Processes ECS 315

Asst. Prof. Dr. Prapun Suksompong

prapun@siit.tu.ac.th
Event-Based Properties

Probability space

- Mathematically, to talk about probability, we refer to probability space.
- Probability space has three components

1. Sample space Ω
2. Collection of events

- Example: All subsets of Ω. (Assume Ω is finite.)

3. Probability Measure

- A real-valued set function

Kolmogorov's Axioms for Probability

Abstractly, a probability measure is a function that assigns real numbers to events and satisfies the following assumptions:
P1 Nonnegativity: For any event A, This is called the

$$
P(A) \geq 0 .
$$ probability of the

P2 Unit normalization:

$$
P(\Omega)=1
$$

P3 Countable Additivity: If $A_{1}, A_{2}, .$. , is a (countably-infinite) sequence of disjoint events, then

$$
P\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} P\left(A_{i}\right)
$$

Additivity

- Assumption: A_{1}, A_{2}, \ldots are disjoint events.
[5.1 P3] - Countable Additivity: $P\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} P\left(A_{i}\right)$
[5.4] \bullet Finite Additivity: $P\left(\bigcup_{i=1}^{n} A_{i}\right)=\sum_{i=1}^{n} P\left(A_{i}\right)$
- The formula is quite intuitive when you visualize these events in a Venn diagram and think of their probabilities as areas.
- Example:

The "area" of the sample space is 1 .
[5.1 P2]

$$
P\left(A_{1} \cup A_{2} \cup A_{3}\right)=P\left(A_{1}\right)+P\left(A_{2}\right)+P\left(A_{3}\right)
$$

${ }^{[5.6]}$ Steps to find probability of an event that is defined by outcomes

1. Identify the sample space Ω and the probability $P(\{\omega\})$ for each outcome ω.
2. Identify all the outcomes inside the event under consideration.
3. When the event is countable, its probability can be found by adding the probability $P(\{\omega\})$ of the outcomes from the previous step.

$$
P\left(\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}\right)=\sum_{i=1}^{n} P\left(\left\{a_{i}\right\}\right) \quad P\left(\left\{a_{1}, a_{2}, \ldots\right\}\right)=\sum_{i=1}^{\infty} P\left(\left\{a_{i}\right\}\right)
$$

More properties

- $P(A) \in[0,1]$.
- Monotonicity: If $A \subset B$, then $P(A) \leq P(B)$.
- If $A \subset B$, then $P(B \backslash A)=P(B)-P(A)$.
- $P\left(A^{c}\right)=1-P(A)$.

